當前位置: 首頁 精選范文 人工智能教育課程范文

人工智能教育課程精選(五篇)

發布時間:2023-10-11 15:55:16

序言:作為思想的載體和知識的探索者,寫作是一種獨特的藝術,我們為您準備了不同風格的5篇人工智能教育課程,期待它們能激發您的靈感。

篇1

關鍵詞:高校;人工智能;倫理道德教育

中圖分類號:G642.0文獻標志碼:A文章編號:1674-9324(2019)41-0144-02

一、人工智能課程倫理考慮的基本內涵

人工智能課程中進行倫理考慮,是在人工智能課程中有針對性地加入道德教育的元素。在方式上,可以借用西方的“隱形教育”方式。在內容上,必須符合中國的人工智能發展態勢,更要受中國社會主義核心價值體系的引導。目前中國的人工智能課程,過度偏向于技術性。尤其是許多社會機構提供的課程,更是偏向于功利性,目的在于讓學習課程的學習者快速獲得工作。因此,必須從源頭入手,對這些社會機構進行一定的約束和規范,對人工智能課程內容進行整體的架構。

二、高校人工智能課程中倫理考慮的必要性

(一)我國對于科技工作者職業道德建設的要求

首先,科技工作者的職業道德建設是促進社會治理體系現代化的必然要求。加強社會治理制度建設,一靠法治,二靠德治。中國正聚焦力量加強自主創新,科技是第一生產力。基于當代中國語境下,科技工作者的職業道德建設就至關重要。科技工作者對自己的社會責任與倫理責任應該有著充分的理解,在科研活動中既要著眼于為社會提供科學技術上的新成果,同時也要強調在倫理道德建設中起到應有的作用。

其次,從長期看,科技工作者的職業道德建設利于國家科技的發展,利于促進科技難題的解決。發展是連續和間斷的同一,科技發展不能一蹴而就。在面臨科技瓶頸問題時,就更要求科技工作者具有堅韌不拔的品質和無私奉獻的精神。這些精神都是進行職業道德教育中的重要內容,也是科技工作者承擔的社會角色中必不可少的特質。

最后,高尚的職業道德是科技工作者奮進的不竭動力。一個科技工作者只有站在最廣大人民的立場上,奉獻自我才能成就事業。隨著全球化的發展,受西方“享樂主義”的負面影響,科技工作者只有更加堅守自我、承擔社會責任,才能具有不斷前進的精神支柱。

(二)對解決人工智能倫理困境的源頭性作用

隨著人工智能應用領域的廣泛化,以及應用群體的普及化,難以避免的帶來一些倫理問題上的困境。例如倫理學中經典的“電車難題”,在當代科技發展中也出現了在人工智能領域的“無人車難題”。無人車產生事故的責任歸屬與分配就是目前很多學者在關注的倫理問題。人工智能的發展對當前的法律規制,還有現存的人倫規范都產生了挑戰。人工智能的未來發展方向,在操作性上要避免技術鴻溝,在設計過程中要堅持算法公開化、透明化,并且在出現數據漏洞時應盡快地進行自我修復。這對于科技工作者自身的素質提出了很高的要求,不但要求科技工作者自身的知識素質與知識能力過硬,而且要求科技工作者要嚴于律己,具有較高的思想道德素質。要求科技工作者對于人工智能的發展保持理性的態度,堅持為國為民。許多科幻電影和小說中都體現了未來人工智能發展到一定階段時,人與機器產生的情感迷思。作為科技工作者,在設計與調整過程中都應保持情感中立,勇于承擔社會責任。目前我國正處于人工智能發展的初級階段,人工智能尚不能擁有自主意識,人工智能的行為責任必須要找到其背后的擁有自主意識的人。無論是現階段還是未來,作為人工智能產品開發者與設計者的科技工作者樹立正確的價值觀和承擔相應的社會責任是十分必要的。科技工作者的知識層次與道德品質在某種程度上說,是研發人工智能產品的起點。因此,對科技工作者的成長過程中進行持續的道德教育,使其樹立高尚的道德觀念,對于解決許多人工智能帶來的倫理困境都具有源頭性、基礎性的作用。

三、高校人工智能課程與倫理道德教育的結合方式探索

(一)高校人工智能課程資源的充分運用與更新

從資源形態上看,實物化資源與虛擬化資源,線上資源與線下資源都應充分運用。隨著智能校園的普及,有基礎條件的地區與校園可以充分運用好身邊的人工智能。人工智能課程是一門理論與實踐相結合的課程,因此課程的內容也不能僅停留在理論層面。除了對于學術資源的運用,也應當結合實體的人工智能產品進行學習。但因為人工智能的發展程度還沒有普及化,人工智能機器人也遠沒有達到觸手可及的程度。因此運用新媒體技術,通過虛擬現實的手段進行在教學過程中的知行結合是可以嘗試的路徑。VR技術在網絡設備硬件教學中可以節約成本,便于人工智能課堂的普及化。在理論教學中,可以通過與虛擬機器人的交互增強趣味性。VR技術有3個最突出的特點:交互性、沉浸性和構想性。課程設置者可以充分借助VR的沉浸性設置相應的場景,讓課程學習者通過對特定道德場景的判斷引出思考。這種新媒體手段既可以更新原有課堂知識的教學教法,更適合作為倫理教育走入人工智能課堂的重要媒介。

從資源時態上看,人工智能課程資源必須隨著人工智能的發展而不斷更新。從現實角度來看,最初開設人工智能課程時,其教學目標還是相對簡單的——即培養學生的創造性與知識能力。但隨著人工智能的普及應用,產生了許多人工智能語境下的道德困境。從指導思想來看,我國逐步走向世界舞臺,隨著實力增強指導思想也是不斷變化的,新時代會提出新目標,為了實現中華民族的偉大復興,課程內容的豐富也是十分必要的。因此,人工智能課程若要符合時代需要,就需要不斷地更新課程資源。人工智能這一學科是具有學科交叉性的,與之相關各個領域的最新前沿問題都需要結合相應的道德教育,只有這樣才能適應時代的發展。

(二)高校人工智能課程內容的合理架構

對于不同年齡層次的人工智能課程,必須考慮到不同群體的教育規律。提出合理的教育目標,用不同群體可以接受的方式方法才能達到最優的教學效果。我國人工智能課程目前的課程架構中,已經有學者進行了分年齡層次的研究。人工智能課程可以規劃為專業性逐漸增強的、從邊緣到中心的課程層級系統。對于高校本科生和研究生來說,人工智能課程設置內容必須具有專業性。在上文的課程體系建構中添加了藝術、文學、哲學等內容,其中包含對于人工智能倫理學的思考與認識。但在某種意義上這些青年的社會價值觀就代表了未來科技工作者的社會價值觀。因此在這一階段,人工智能課程的架構與實施,國家應加以引導和監督。一方面需要建立統一標準的高校人工智能課程體系,另一方面在應對課程具體內容的落實方面給予一定程度的監督。

(三)在高校人工智能課程教學過程中充分運用案例

首先應充分運用學術案例,例如度量學習,在其基礎上的遷移學習,以及發表在《機器學習》、《數據挖掘》等頂級期刊上的論文。使課堂具有含金量,可以說這也是國家發展與關注的重點。通過學術性經典案例的學習可以擁有不一樣的視角,通過歷史發展的角度去看人工智能技術的演變與發展。其次應充分運用具體案例。在人工智能課程中對于許多道德問題,不應抽象地去討論,而應該具體地去討論。也可以讓學生與AI系統進行直接的問答,如:我們能保證它們穩定可靠嗎?我們應該如何去測試人工智能?人工智能課堂中既要包容學生多元化的答案,不壓抑創造性又要對于錯誤的思想進行思想轉化,這就需要教育者具體問題進行具體分析了。

篇2

當前高職教育中為計算機專業學生所開設的人工智能課程很大程度上沿用了普通高等教育環境下的教學方式和內容,這顯然與高職教育本身培養人才的目標和方式不一致。高職教育的最終目標是要培養適應生產需要的技能型、應用型人才,而高職教育在教學方式上應更為注重實踐教學,包括各種實驗、實訓、實習和設計。因此,人工智能課程中單純的理論講授并不能有效地適應高職教育的實際教學環境要求,有必要對人工智能課程在教學內容和方式上加以改革。三個改革途徑(一)引導學生閱讀應用研究文獻

高職教育強調培養學生的知識應用技能,其中重要的一點是要培養學生把理論知識應用到實際生產中的能力。然而在教學實踐過程中,學生普遍反映由于人工智能課程理論性強,難于從課本理論聯系到實際的專業應用上,這樣對激發學生的學習興趣,提高技能應用水平是不利的。

實際上,人工智能涉及的應用領域極為廣泛,其中在專家系統、模式識別、智能控制、數據挖掘、自然語言理解等方面尤為突出,每一種應用都能夠很好地體現出人工智能學科的基本理論方法特點。因此,在課程學習的開始階段,應讓學生按照個人興趣自行選定某個應用領域,在一定的提示和引導下通過檢索有關文獻,訪問相關的科研院校網站等方式獲取資料,了解當前該領域的發展現狀和具體產品的開發和使用情況,最后在課程的結束階段以學習報告的形式在課堂上加以演示和共同討論,這樣可以大大激發學生學習人工智能課程的主觀能動性,開闊學生的知識視野。資料的收集閱讀與思考是知識應用的首要環節,對于培養應用型人才的知識應用技能很有幫助。(二)安排學生對經典算法程序進行實驗

與普通高等教育相比,高職教育更加強調實踐教學的重要性。從實踐中學習和理解理論知識,并且把所學知識運用到實踐中,這是高職教育的重要特點。人工智能課程內容抽象而概念性強,單純的理論講解學生難以從中得到啟發,也難以體現出高職教育突出實踐教學的特點,為此需要安排學生動手實驗,從實踐中理解人工智能科學的理論原理和應用途徑。

在人工智能科學的發展過程中,先后提出了一些經典的優秀算法程序,如A*算法、遺傳算法、神經網絡的BP學習算法等,在科研和工程實際中得到了廣泛的應用,在實踐教學中同樣有著重要價值。根據教學要求和實際情況,學生并不需要自行設計關于這些算法的具體程序,在提倡開放和共享源代碼的今天,通過網絡能夠獲得大量相關的程序代碼資源。同時,一些軟件平臺也集成了一些工具箱,如遺傳算法工具箱、神經網絡工具箱等,只需設定相關輸入參數和數據,便可通過調用工具箱函數實現算法,極為簡便而易于理解。

學生應通過對這些程序作驗證性實驗來理解所學內容。為安排學生有效地進行實驗,教師應結合當前階段所講授的內容準備相應的算法程序,當該部分內容結束后在課堂上講解和演示算法程序的運行方法。學生獲得該算法程序以及具體的實驗任務后在課后完成實驗并提交實驗報告。

例如,在講授啟發式搜索時,可向學生提供A*算法求解八數碼難題的算法程序,并對某個學生給定某個初始棋盤狀態,要求學生動手運行程序并記錄由算法擴展所得的每個棋盤狀態的估價函數計算結果,以及相應的OPEN表和CLOSED表的變化情況,從中理解A*算法的原理特點。又如,在講授BP學習算法時,可根據學生的實際情況對內容進行調整,強調BP神經網絡的實際工程應用價值,而對BP算法的基本原理只作簡單介紹。向學生提供利用BP神經網絡學習特定目標函數的MATLAB程序代碼后,要求學生動手運行該程序,并且記錄和對比神經網絡在訓練前后對目標函數的逼近效果。

(三)啟發學生引入人工智能理論方法對畢業設計加以創新

畢業設計是高職教育的重要環節,學生通過畢業設計對以往所學知識作系統性總結,通過畢業設計能進一步加強學生的技能訓練,提高學生的技能應用水平。從實踐教學的角度來講,畢業設計不僅僅要求學生對已學知識和技能的簡單重復運用,更重要的是強調學生能夠主動獨立地分析實際問題,對問題的解決方法提出新的觀點并付諸實踐。然而從教學的實際來看,在畢業設計中學生創新的主動性不足,往往停留在繼承和模仿階段,畢業設計作品少有突破和創新。究其原因,并非學生所學知識和技能不足,而是學生未懂得如何分析已有問題,在其基礎上引入新的解決方法或提出新的應用內容。

篇3

關鍵詞:人工智能;研究型實驗教學;民族關系

人工智能是計算機科學的一個分支,是一門研究運用計算機模擬和延伸人腦功能的綜合性學科,對它的研究涉及控制論、信息論、系統論、語言學、神經生理學、數學、哲學等諸多的學科及領域,是一門綜合性的交叉學科[1]。

人工智能的研究、應用和發展,在一定程度上代表著信息技術的發展方向,同時信息技術的廣泛應用也對人工智能技術的發展提出了迫切的需求。今天,人工智能的不少研究領域如自然語言理解、模式識別、機器學習、數據挖掘、智能檢索、機器人技術、人工神經網絡等都走在了信息技術的前沿,有許多研究成果已經進入人們的生活、學習和工作中,并對人類的發展產生了重要影響[2]。

實踐教學環節在大學教育中是一個非常重要的教學環節,是提高人才素質與能力的重要途徑。人工智能課程除了具有較強的專業性之外,還具有突出的實踐性,為了能深入理解和掌握所學內容,必須把講授和實踐結合起來。本文結合該課程實驗教學,將研究型教學的理念引入到實驗教學,并對教學過程中的經驗和問題加以初步的總結。

1研究型教學模式背景

研究型教學是相對于以單向性知識傳授為主的傳統教學提出的,是指教師以課程內容和學生的學識積累為基礎,引導學生創造性地運用知識和能力,自主地發現問題、研究問題和解決問題,在研究中積累知識、培養能力和鍛煉思維的新型教學模式。研究性教學是對現有的大學課堂教學模式的突破。有利于開發大學生的創造潛能,提高學生適應社會需要的創造性和創新能力,充分展現現代大學培養人才、發展科學、服務社會的三大基本職能[3]。

19世紀初,德國著名教育家洪堡最早提出了教學與科研相統一的原則,為研究型教學模式的發展奠定了基礎。20世紀50、60年代,美國著名教育心理學家布魯納提出了著名的“發現教學模式”[4],成為后來探究性學習和研究型教學的先導。20世紀70年代,美國研究教學專家薩奇曼正式提出了研究訓練教學模式。他認為學生會本能地對周圍新奇事物發生興趣,并想方設法弄清這些新奇事物背后究竟發生了什么,這是一種進行科學研究的可貴的動力。

自此,研究型教學理念開始廣泛使用。現在,哈佛大學、牛津大學、劍橋大學等世界著名大學,都非常注重學生能力的培養,普遍采取了研究型教學模式。以美國高校為例,雖然美國高校83%的教師在課堂教學中主要采用講授法進行教學,但在整個教學過程中都滲透著研究型教學的方法,如積極引導學生參與教學過程,開設研究性課程,引導學生積極主動地參與科研活動等。我國自20世紀90年代初推出211工程建設以來,清華大學、北京大學、人民大學、復旦大學、浙江大學等一些重點大學都提出了建設世界一流的綜合性研究型大學的目標。這些高校在實現從單向知識傳授的傳統型教學向關注創新性教育的研究型教學轉變方面進行了許多有益的嘗試。

2研究型實驗教學

本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。大學是培養未來一線創新人才的主要基地,必須從本科教學人手,深入探索研究型教學的手段和方法,才能滿足未來經濟增長和社會發展的需要,才能符合建設研究型大學的需要。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非常活躍的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。

人工智能課程在計算機專業人才培養方案中占據著重要的位置。在專業理論方面,它承續了離散數學中的邏輯知識;在專業方法方面,是數據結構、算法分析與設計的繼續;在專業工具方面,是面向對象程序設計的生動實例。并且人工智能的每一部分內容都可以作為一個深入的研究課題,課堂上講解的內容不可能面面俱到,學生們也不可能對人工智能的每一領域都做很深入的學習。并且人工智能涉及很多的數理邏輯知識,有些顯得難以理解,并且往往讓學生感到比較枯燥,學生的學習興趣就漸漸淡薄,學生往往被動“聽講”,難以獲得預期的教學效果。

針對這一特點,在人工智能教學中,如何引導學生系統學習人工智能的知識、激發學生的研究興趣,樹立目標意識找準研究方向,為未來的科研工作打下基礎,研究型實驗教學就成為了人工智能課程教學的一個重要環節和必然選擇。

2.1實驗教學中加強學生的研究導向

在實驗教學中,如果照搬一些教材中的例子或習題教學,一方面學生們會缺乏興趣,另一方面學生對這個領域的知識缺乏全面的了解。應不斷提出一些學生們感興趣的開放性課題,比如基于支持向量機的人臉識別、基于膚色的人臉檢測,基于內容的圖像檢索等,培養學生們的學習興趣,讓學生們逐漸深入的學習某一領域的知識。比如BP神經網絡,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用,是一種具有強大的非線性學習能力的計算智能技術。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等,而支持向量機在這些方面具有顯著優點。我們可以設計一個人臉識別的實驗,用神經網絡和支持向量機分別實現,并作以比較。讓學生們在了解人工智能新技術的同時,也培養學生們如何分析問題、解決問題的科研能力。

2.2人工智能課程實驗

該課程是一門對實驗技術有較高要求的課程,對于基本原理和方法的實現,要求學生進行嚴格的計算機專業技能訓練和培養良好的科研工作作風。因此對課程中的技能及技術性內容,除單獨進行必要的基礎訓練外,還融入到綜合和研究型試驗中,通過多次反復實驗練習,達到牢固掌握人工智能原理和人工智能的問題求解技術的目的。

該課程的實踐環節主要是實踐項目,由具備較強工程實踐能力的任課教師和助教負責,學生可在全天候開放的專用機房完成。在實踐環節的設計上,我們嘗試把驗證性實驗和開發性實驗相結合,結合實驗教學進度,安排相應的開放實驗,開放性實驗以科學研究實驗為主。并在課程的教學過程中,不斷深化和擴展教學內容,結合人工智能學科的發展趨勢和本院老師的最新研究成果,對實驗內容進行更新。

課程主要設置三種層次的實驗:1)基本原理和算法編程,測試例設計及程序測試實驗;2)分析綜合實驗;3)研究型設計實驗。整個實驗包括課前討論、實驗操作、實驗報告、結果討論、總結提高等六個環節。對于綜合性和研究型實驗,把學生分成5個人一小組,每小組選做其中的一個。學生從指導老師處了解到實驗課題后,即著手查資料,研讀文獻,鉆研有關理論。在此基礎上,學生先提出實驗方案,經與老師討論后,即可開始實驗研究。

3實驗平臺的構建

民族關系問題對被訪對象,特別對少數民族被訪對象是非常敏感的問題,對民族關系的評價又存在個體層面、群體層面、不同階層人群之間的差異,因此,僅僅以傳統的文獻分析、問卷統計和現場觀察等民族學方法來進行調查,得到的數據會存在較多誤差。

因此結合本校的民族特色和民族學領域獨特的研究優勢,將信息認知技術引入民族關系研究,運用圖像、心電和腦電數據進行分析,將分析的結果和心理場景測試及民族學調查結果進行相互印證和參數修正,從而獲得盡可能客觀的數據,這些數據將有助于建立一個客觀、完備、科學的民族關系監測體系,并真實全面地評估民族關系,從而使決策機構及時做出正確的決策。基于多信息融合的民族關系監測預警系統總體框圖如圖1所示。

目前該平臺已經搭建,由北京市公共安全信息監測平臺建設、北京市公共安全信息監測平臺建設關鍵技術研究、基于多源信息融合的民族信任研究等多個重大項目支撐。在這個平臺的下面,涉及到人臉識別、表情識別,視頻監控、認識等領域,小波分析、神經網絡、支持向量機、模糊數學、信息融合等人工智能知識得到了具體的應用。學生可以根據自己的興趣愛好,自愿參加到該平臺下的某一項目,切實對自己所學知識有一個深刻的理解和掌握。

4結語

研究型實驗教學激發了學生的學習興趣,不但使學生更好地掌握了人工智能的基本概念、基本理論和基本技術,也切實提高了學生的實際動手能力和編程能力。研究型實驗教學在實踐過程中還有以下問題需要改進:

1) 研究型實驗教學的理念很難普及。很多教師對研究型教學模式的內涵未能準確把握,把研究型教學模式等同于學生實習或者寫論文。

2) 研究型實驗教學的輔導老師素養需要提高。研究型實驗教學作為體現創新教育要求的現代教學模式,需要的不是知識傳授型的教師,而是高素質的研究型教師。教師不僅是單一的教者,更應該成為一個學者,教師不僅要有研究型教學的教育觀念、快速接受新知識的能力和高超的教學技能,要能夠合理地規劃和設計實驗內容。

3) 需要建立一套合理的學生學業和教師績效的評價體系。

參考文獻:

[1] 王萬森. 人工智能原理及其應用[M]. 北京:電子工業出版社,2007.

[2] 蔡自興,徐光佑. 人工智能及其應用[M]. 北京:清華大學出版社,2004.

[3] 李得偉,張超,李海鷹. 大學工科專業課程實施研究型教學的探討[J]. 高等教育研究,2009(9):74-75.

[4] 彭先桃.大學研究性教學的理念探析[J].教育導刊,2008(3):56-58.

Exploration and Practice of the Research Experiment on Artificial Intelligence

ZHANG Ting, YANG Guo-sheng

(College of Information Engineering, Minzu University of China, Beijing 100081, China)

篇4

[關鍵詞]工作過程導向職業教育教師勝任力素質

[作者簡介]路姝娟(1980-),女,山西長治人,上海第二工業大學成人與繼續教育學院,助理研究員,研究方向為職業技術教育。(上海200060)蔣鳴(1957-),男,浙江諸暨人,上海第二工業大學人文學院副院長,副研究員,研究方向為高等教育、職業技術教育和繼續教育。(上海201209)

[基金項目]本文系上海第二工業大學校基金項目“職教師資培訓基地內涵建設——培訓教師勝任力素質模型研究”的階段性成果。(項目編號:A20XQD21017)

[中圖分類號]G715[文獻標識碼]A[文章編號]1004-3985(2012)21-0066-01

一、基于工作過程導向課程的特點

工作過程是指在企業生產實踐中為了完成一項具體的工作任務并取得工作成果的一段完整的工作程序,這個過程具有相對穩定性,但又是動態的。所謂“工作過程導向”的模式,是從實際工作崗位的典型工作任務出發,以完成實際工作任務所需要的知識為學習內容,以培養企業所需的職業能力為目標,以實踐過程的學習為主要過程的一種全新的職業教育模式。

1.內容設計以工作過程任務為載體。基于工作過程導向課程內容和結構的基礎不是學科的系統性框架,而是工作過程的系統化。一般來說,每個專業的課程有10~20個學習領域組成,一個學習領域代表一個學習主題單元,由學習目標、學習內容和學習時間三部分組成。各學習領域在內容和形式上沒有直接聯系,但內容都是基于工作導向,以該專業的職業行動領域為依據的。

2.開發者由企業專家和專業教師共同承擔。由于基于工作過程導向的課程的設計是以工作過程的任務載體,要求以工作任務為線索把某專業領域所有傳統課程的知識點進行重新的整合與融合。為了完成這一創新性的工作任務,既需要有實踐經驗的企業一線人員的參與,又需要有較強理論素養的職校教師的參與。企業一線技術人員主要負責對典型工作任務的工作內容和工作過程進行分析,職教教師在此基礎上,進一步進行教學的分析和加工,使各個工作過程所需的理論知識的組合原則符合螺旋式上升的要求。

3.教學實施以行動導向為原則。職業學校的課程實施分為理論課和實踐課。傳統理論課以學科體系進行課程設置,注重系統理論知識的傳授,在這種課程體系中教師的任務是講課,學生的任務是聽課。實踐課以驗證為主,沒有明確的任務目標載體。

為了達到工作過程導向課程培養學生職業行動能力的要求,必須以“行動導向”為原則,即針對與專業緊密相關的職業“行動領域”的工作過程,按照“資訊—計劃—決策—實施—檢查—評估”完整的“行動”方式來進行教學。基于行動導向的教學方法主要有項目教學法、任務教學法、引導文教學法、示范教學法、四階段教學法等。

二、基于工作過程導向的課程模式下職業教育教師的角色定位

基于工作過程導向課程體系的構建是一個以行動體系為特征的過程,完整的開發過程包括市場調研—職業、工作分析—確定學習領域—設計教學情景—教學實施—教學評價,在整個過程中可以及時評價,及時改進,及時重返上一流程進行重新分析設計,所以基于工作過程導向課程的開發是一個動態、系統、開放的循環過程,在每個階段職業學校教師都起到了重要的作用。

1.在市場調研階段要求教師具有不斷更新自己知識系統的能力。新的課程設置標準還要求教師參與課程的設計。要使設計出的課程適合市場和企業實踐工作過程的要求,職業教育教師需要不斷更新自身的知識系統,具備一定的市場敏銳性,以適時動態地更新課程內容。

2.在職業、工作分析階段要求教師具有企業實踐經驗。無論是在參與課程開發過程還是在實施教學的過場中,都要求教師要具備企業的實踐經驗。一方面,教師只有具備企業實踐經驗才能更好地將工作過程任務的要求轉變為教學的學習領域知識;另一方面,教師也只有具備企業實踐經驗,才能將各個學習領域知識通過行動導向教學方法傳授給學生。

3.在確定學習領域階段要求教師具有專業綜合知識。在工作導向的課程體系中,各個學習領域取代了獨立的各門課程,每個學習領域是若干門傳統課程中若干個知識點的組合。這就要求教師不僅是掌握本專業若干門課程的知識,而是整個專業的綜合知識。

4.在設計教學情景階段要求教師具有團隊精神。在課程實施的過程中,教學情景的設計是以學習領域為基礎的,而一個學習領域可能涉及本專業的若干方面的綜合知識,為了更好地完成教學任務,需要多個教師協同設計教學情景,協同完某項目的教學,要求新課程模式中的教師要轉換傳統角色,具備團隊合作的精神。

5.在教學實施環節要求教師角色進行創新性轉變。在傳統課程教學實施的過程中,為了向學生傳授已知的系統學科知識,主要以教師的教為主,忽視學生的主體作用。在新的課程標準中,要求教師要以行動導向為原則,從表演者、灌輸者、評判者的角色中掙脫出來,從而轉變為教學的組織者、引導者和指導者。

6.在教學評價環節要求教師確立多元評價標準。新課程體系中的教學評價應包括專業能力、方法能力、社會能力三個方面的內容,要求教師要克服傳統的以考試分數為單一標準的評價,注重過程性評價,注重團隊精神和創新能力的培養。

三、基于工作過程導向的課程模式下職業教育教師的勝任力素質

斯賓塞認為勝任力是指“能將某一工作中表現優異者與表現平平者區分開來的個人的潛在的、深層次特征,它可以是動機、特質、自我形象、態度或價值觀、某領域的知識、認知或行為技能——任何可以被測量或計數的,并且能顯著區分優秀績效和一般績效的個體特質。”筆者通過行為事件訪談、深度訪談、詞頻分析等方法構建了職業教育教師的勝任力素質模型,具體內容如圖所示。

進一步看,工作過程導向課程模式下職業教育教師的勝任力素質模型還可以分解為以下五個維度。實踐素養:企業經歷、專業實踐能力、實踐探索能力;職業素養:事業心和責任感、溝通協調能力、奉獻精神、團隊精神;專業素養:專業綜合知識、“理實合一”能力、專業敏銳性、科研能力;發展素養:前瞻性、學習能力、適應能力、創新能力;品格素養:正直、自信、親和力。

工作導向課程模式作為一種全新的職業教育模式,它加強了職業教育課程內容與工作的關聯性,整合了理論與實踐,對于培養高技能創新人才,實現中國職業教育的跨越式發展具有重要意義。基于工作導向課程模式下職業教育教師的素質特征和勝任力結構呈現出了新的特點和發展方向。在一定時間內,基于工作導向課程模式下職業教育教師的勝任力素質將會保持一定的穩定性。

[參考文獻]

篇5

人工智能的迅速發展將深刻改變人類社會生活、改變教育教學。2020年2月26日,教育部在印發的《2020年教育信息化和網絡安全工作要點》第24條“培養提升教師和學生的信息素養”中明確提出:完善義務教育階段課程設置,加強信息科技教育。建設普通高中人工智能樣板實驗室,保障中小學校具備開設人工智能課程的環境條件。開展人工智能相關教學與師資培訓,搭建區域間人工智能教學成果交流平臺。繼續推進中小學人工智能教育課程建設、應用與推廣工作。中小學人工智能教育課程包(初中版和高中版)和支持服務系統并推廣應用。

我校是青島市人工智能實驗學校。在工作中我們借助教研、教學平臺,積極推動人工智能課程開展和教師教研、集備工作,根據興趣導向、應用驅動,學用結合,強化實踐的原則,組建了實驗班,按照上級對于高中段開課部署每兩周開設1課時,開展人工智能教育教學工作。

在課堂上組織實驗班的學生觀看了人工智能的《開學第一課》,主要是“什么是人工智能”、“如何制造人工智能?、“New Google AI Can Have Real Life Conversations With Strangers”等內容,很有收獲。但是在觀看過程中發現很多的人工智能相關聯的知識,比如JAVA、大數據、Python、人工智能、物聯網、數據分析、H5/WEB前端、嵌入式、Linux、C語言、單片機、C++等解根本看不懂,發現自己的很多方面都需要補課,不然每次培訓老師講解的專業東西還是理解不了,這對于我們教師和學生都是一個難點。也斷斷續續參加了各種形式的培訓,和同仁們交流起來總體感覺是沒有系統化,特別是參加了祁榮斌博士組織的磨課,和同事們討論起來感覺層次太高,有些內容也是理解不了!學生和學生的學習和生活環境比較起來也存在地域差異性導致了學生接受人工智能相關教育程度深淺不一,而且面向高中生的課本難度很大,很希望能有個機會從零基礎開始系統化學習人工智能,這樣才能更好的教好學生,這一點線下交流的時候是很多老師的心聲,期望能在領導和專家的引領下實現。

通過斷斷續續的學習,比如Python基礎知識,由于實戰少,只能閱讀別人的文章里附帶的相關算法的實現代碼,這樣的學習效果不明顯。很多算法的實現,難以從代碼級去理解其設計思路;對于很多算法比如隨機森林,決策樹,SVM等常見算法,雖然看了相關文章很多遍但是還是一知半解的。

主站蜘蛛池模板: 欧美综合自拍亚洲综合图片| 风流女护土一级毛片| 思思久久99热只有频精品66| 久久精品免费一区二区三区 | 老色鬼欧美精品| 国产成人免费全部网站| 521色香蕉网站在线观看| 天天操天天摸天天舔| 中文乱码35页在线观看| 日韩一区二区视频| 亚洲乱码在线视频| 欧美精品v国产精品v日韩精品 | 免费看国产一级片| 联谊对象是肉食系警官第6话| 国产成人AV三级在线观看按摩| 香蕉视频污网站| 国产香蕉精品视频| av一本久道久久综合久久鬼色| 性高湖久久久久久久久aaaaa| 久久久久久久综合狠狠综合| 日韩精品黄肉动漫在线观看| 亚洲制服欧美自拍另类| 欧美精品黑人粗大视频| 什么网站可以看毛片| 精品人妻伦一二三区久久| 囯产精品一品二区三区| 青青热久久久久综合精品| 国产日韩一区二区三区在线观看| 2020年亚洲天天爽天天噜| 国模无码一区二区三区不卡| hxsp777.com| 好男人好资源影视在线| 一级特级女人18毛片免费视频| 美女胸又www又黄网站| 国产午夜激无码av毛片| 国产男女爽爽爽爽爽免费视频| 国产精品久久久久久久久久久不卡| 91香蕉在线观看免费高清| 在线观看91精品国产入口| eeuss影院机在线播放| 婷婷99视频精品全部在线观看|